LIMK2 promotes centrosome clustering and cancer progression by activating MST4-mediated phosphorylation of NPM1.

LIMK2 通过激活 MST4 介导的 NPM1 磷酸化来促进中心体聚集和癌症进展

阅读:9
作者:Tian Jie, Liu Shihui, Zhang Yunqing, Jia Huajie, Nie Wenna, Yang Ran, Ge Mengmeng, Liu Kangdong, Song Mengqiu, Dong Zigang
Centrosome amplification, a hallmark of diverse malignancies, enables cancer cell survival through centrosome clustering during mitosis, presenting a promising therapeutic target for selective elimination of cancer cells with supernumerary centrosomes. While the regulatory mechanisms underlying centrosome clustering remain poorly understood, our study identifies LIM kinase 2 (LIMK2) as a critical regulator of this process, demonstrating cancer correlation with tumor progression. Mechanistically, LIMK2 phosphorylates mammalian sterile-20-like kinase 4 (MST4) at threonine 178 (T178), activating its kinase function. Activated MST4 subsequently binds and phosphorylates nucleophosmin 1 (NPM1) at T95, a modification essential for centrosome clustering and tumor cell proliferation. Genetic depletion of NPM1 disrupts centrosome clustering and suppresses malignant growth. In vivo studies revealed that LIMK2 knockout significantly attenuates 4-nitroquinoline-1-oxide (4NQO) induced esophageal tumorigenesis in murine models. Therapeutic targeting of LIMK2 through shRNA-mediated knock down or pharmacological inhibition (CRT0105950) suppresses centrosome clustering by preventing "pseudo-bipolar" spindle formation, inducing mitosis arrest. This centrosome de-clustering promotes multipolar spindle assembly, ultimately triggering apoptotic cell death. Notably, CRT0105950 treatment effectively suppressed cell-derived xenograft tumor growth. Our findings elucidate the pivotal role of the LIMK2/MST4/NPM1 pathway in cancer progression and establish a novel therapeutic paradigm for broad-spectrum anticancer intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。