To preserve barrier function, cell-cell junctions must dynamically remodel during cell shape changes. We have previously described a rapid tight junction repair pathway characterized by local, transient activations of RhoA, termed "Rho flares," which repair leaks in tight junctions via promoting local actomyosin-mediated junction remodeling. In this pathway, junction elongation is a mechanical trigger that initiates RhoA activation through an influx of intracellular calcium and recruitment of p115RhoGEF. However, mechanisms that tune the level of RhoA activation and Myosin II contractility during the process remain uncharacterized. Here, we show that the scaffolding protein Anillin localizes to Rho flares and regulates RhoA activity and actomyosin contraction at flares. Knocking down Anillin results in Rho flares with increased intensity but shorter duration. These changes in active RhoA dynamics weaken downstream F-actin and Myosin II accumulation at the site of Rho flares, resulting in decreased junction contraction. Consequently, tight junction breaks are not reinforced following Rho flares. We show that Anillin-driven RhoA regulation is necessary for successfully repairing tight junction leaks and protecting junctions from repeated barrier damage. Together, these results uncover a novel regulatory role for Anillin during tight junction repair and barrier function maintenance.
Anillin tunes contractility and regulates barrier function during Rho flare-mediated tight junction remodeling.
Anillin 在 Rho flare 介导的紧密连接重塑过程中调节收缩性和屏障功能
阅读:4
作者:Craig Zie, Arnold Torey R, Walworth Kelsey, Walkon Alexander, Miller Ann L
| 期刊: | Molecular Biology of the Cell | 影响因子: | 2.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 1; 36(3):ar31 |
| doi: | 10.1091/mbc.E24-11-0513 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
