Exogenous diatoms ameliorate thermal bleaching of symbiont bearing benthic foraminifera.

外源硅藻可缓解共生底栖有孔虫的热漂白现象

阅读:6
作者:Titelboim Danna, Dedman Craig J, Hodgson Rose Pian, Knowles Lucy S, Liu Xuan, Lenzi Luca, Tudor Jack, Vamos Edith, Rickaby Rosalind E M
Many marine calcifiers engage in obligatory algal symbiosis which is threatened by ocean warming. Large benthic foraminifera are prominent carbonate and sand producers in shallow environments with a wide range of species-specific thermal tolerances assumed to be related to their diverse algal symbionts. We examine two diatom-bearing benthic foraminifera species which differ in their thermal physiological tolerance and symbiont community composition. Our findings demonstrate that the less thermally tolerant host, Amphistegina lobifera Larsen, 1976, 'shuffles' the dominant players of the internal symbiont community with increasing temperature while the more thermally tolerant host Pararotalia calcariformata McCulloch, 1977, is dominated by Arcocellulus cornucervis Medlin, 1990, at all temperatures. Although this diatom species was present in A. lobifera from all treatments, it became more abundant only under the most severe temperature stress. Symbionts were isolated from the thermally tolerant foraminifera P. calcariformata, with only one species of symbiont surviving at 35°C, while the others failed to survive at 32°C. Supplementation of isolated symbionts reduced bleaching of A. lobifera under heat stress suggesting that while increased temperature creates shuffling at the family level, heat tolerance of the holobiont is related to changes at the species level of the symbiont algae.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。