Many marine calcifiers engage in obligatory algal symbiosis which is threatened by ocean warming. Large benthic foraminifera are prominent carbonate and sand producers in shallow environments with a wide range of species-specific thermal tolerances assumed to be related to their diverse algal symbionts. We examine two diatom-bearing benthic foraminifera species which differ in their thermal physiological tolerance and symbiont community composition. Our findings demonstrate that the less thermally tolerant host, Amphistegina lobifera Larsen, 1976, 'shuffles' the dominant players of the internal symbiont community with increasing temperature while the more thermally tolerant host Pararotalia calcariformata McCulloch, 1977, is dominated by Arcocellulus cornucervis Medlin, 1990, at all temperatures. Although this diatom species was present in A. lobifera from all treatments, it became more abundant only under the most severe temperature stress. Symbionts were isolated from the thermally tolerant foraminifera P. calcariformata, with only one species of symbiont surviving at 35°C, while the others failed to survive at 32°C. Supplementation of isolated symbionts reduced bleaching of A. lobifera under heat stress suggesting that while increased temperature creates shuffling at the family level, heat tolerance of the holobiont is related to changes at the species level of the symbiont algae.
Exogenous diatoms ameliorate thermal bleaching of symbiont bearing benthic foraminifera.
外源硅藻可缓解共生底栖有孔虫的热漂白现象
阅读:18
作者:Titelboim Danna, Dedman Craig J, Hodgson Rose Pian, Knowles Lucy S, Liu Xuan, Lenzi Luca, Tudor Jack, Vamos Edith, Rickaby Rosalind E M
| 期刊: | Proceedings of the Royal Society B-Biological Sciences | 影响因子: | 3.500 |
| 时间: | 2025 | 起止号: | 2025 Jun;292(2049):20250596 |
| doi: | 10.1098/rspb.2025.0596 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
