Enhancement of antibacterial activity in electrospun fibrous membranes based on quaternized chitosan with caffeic acid and berberine chloride for wound dressing applications.

增强以季铵化壳聚糖为基础的静电纺丝纤维膜的抗菌活性,用于伤口敷料应用,该纤维膜添加了咖啡酸和氯化小檗碱

阅读:3
作者:Chiu Po-Hsun, Wu Zhao-Yi, Hsu Chih-Chin, Chang Yung-Chi, Huang Chang-Ming, Hu Cheng-Ti, Lin Che-Min, Chang Shin C, Hsieh Hsyue-Jen, Dai Chi-An
Electrospun nanofibers made from chitosan are promising materials for surgical wound dressings due to their non-toxicity and biocompatibility. However, the antibacterial activity of chitosan is limited by its poor water solubility under physiological conditions. This study addresses this issue by producing electrospun nanofibers mainly from natural compounds, including chitosan and quaternized chitosan, which enhance both its solubility for electrospinning and the antibacterial activity of the resulting electrospun nanofibers. Additionally, antimicrobial agents like caffeic acid or berberine chloride were incorporated. The glutaraldehyde-treated nanofibers showed improved mechanical properties, with an average tensile strength exceeding 2.7 MPa, comparable to other chitosan-based wound dressings. They also demonstrated enhanced water stability, retaining over 50% of their original weight after one week in phosphate-buffered saline (PBS) at 37 °C. The morphology and performance of these nanofibers were thoroughly examined and discussed. Furthermore, these membranes displayed rapid drug release, indicating potential for inhibiting bacterial growth. Antibacterial assays revealed that S2-CX nanofibers containing caffeic acid were most effective against E. coli and S. aureus, reducing their survival rates to nearly 0%. Similarly, berberine chloride-containing S4-BX nanofibers reduced the survival rates of E. coli and S. aureus to 19.82% and 0%, respectively. These findings suggest that electrospun membranes incorporating chitosan and caffeic acid hold significant potential for use in antibacterial wound dressings and drug delivery applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。