Selective anti-CXCR2 receptor blockade by AZD5069 inhibits CXCL8-mediated pro-tumorigenic activity in human thyroid cancer cells in vitro.

AZD5069 选择性阻断 CXCR2 受体,可抑制体外人甲状腺癌细胞中 CXCL8 介导的促肿瘤活性

阅读:15
作者:Coperchini F, Greco A, Petrosino E, Croce L, Teliti M, Marchesi N, Pascale A, Calì B, Pignatti P, Magri F, Uddin M, Rotondi M
BACKGROUND: Thyroid cancer is the most common endocrine malignancy. Current therapies are successful, however some patients progress to therapeutically refractive disease. The immunotherapeutic potential of the CXCL8-chemokine/CXCR2-chemokine-receptor system is currently being explored in numerous human cancers. This study aimed to evaluate if the targeting of CXCR2 by its selective antagonist, AZD5069, could modulate CXCL8-mediated pro-tumorigenic effects in thyroid-cancer (TC) cells in vitro. METHODS: Normal human primary thyroid cells (NHT) and TC cell lines TPC-1 (RET/PTC), BCPAP, 8505C and 8305C (BRAFV600e) were treated with AZD5069 (100 pM-10 µM) over a time-course. Viability and proliferation were assessed by WST-1 and crystal violet assays. CXCL8 and CXCR2 mRNA were evaluated by RT-PCR. CXCL8-protein concentrations were measured in cell culture supernatants by ELISA. CXCR2 on cell surface was evaluated by flow-cytometry. Cell-migration was assessed by trans-well-migration chamber-system. RESULTS: AZD5069 exerted negligible effects on cell proliferation or viability. AZD5069 significantly reduced CXCR2, (but not CXCL8) mRNAs in all cell types. CXCR2 was reduced on the membrane of some TC cell lines. A significant reduction of the CXCL8 secretion was found in TPC-1 cells (basal-secretion) and NHT (TNFα-induced secretion). AZD5069 significantly reduced basal and CXCL8-induced migration in NHT and different TC cells. CONCLUSIONS: Our findings confirm the involvement of the CXCL8/CXCR2-axis in promoting pro-tumorigenic effects in TC cells, further demonstrating its immunotherapeutic significance in human cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。