IL-4-STAT6-induced high Siglec-G/10 expression aggravates the severe immune suppressive tumor microenvironment and impedes the efficacy of immunotherapy in head and neck squamous cell carcinoma.

IL-4-STAT6 诱导的高 Siglec-G/10 表达加剧了严重的免疫抑制性肿瘤微环境,阻碍了免疫疗法在头颈部鳞状细胞癌中的疗效

阅读:8
作者:Yang Wenyi, Guo Zhaoyang, Ju Houyu, Lu Yusheng, Fei Yifan, Yin Yuanchen, Ren Guoxin, Yan Ming, Han Chaofeng, Hu Jingzhou
BACKGROUND: Immune checkpoint blockade therapy has shown limited efficacy in head and neck squamous cell carcinoma (HNSCC). Sialic acid binding immunoglobulin-like lectin (Siglec)-15 has been identified as a novel immune evasion biomarker, while the role of Siglec-10 in the specific immune suppressive tumor microenvironment remains largely unknown. METHODS: Immunohistochemical assays were employed to investigate the correlation of the expressions of Siglec-10 and Siglec-15 with the clinicopathological features as well as the prognosis of immunotherapy in patients with HNSCC. The Gene Expression Omnibus datasets were used to identify the upstream transcriptional regulators of SIGLEC10 in tumor-associated macrophages (TAMs) and the downstream biological functions it mediates. These findings were then validated through in vitro and in vivo experiments. The impact of Siglecg deficiency on the efficacy of immunotherapy and the activation of CD8+T cells was analyzed in mouse HNSCC tumor-bearing models. RESULTS: The expression of Siglec-G/10, rather than that of Siglec-15, was positively correlated with immune suppressive marker programmed death-ligand 1 (PD-L1) expression and was associated with cervical lymph node metastasis, poorer pathologic stage, and lower sensitivity to immunotherapy. Siglecg deficiency rescued the immune suppressive tumor microenvironment, as evidenced by decreased TAM-associated phenotype and increased CD8+T cell infiltration and activation, which inhibited tumor growth significantly. Single-cell sequence and transcription factor prediction revealed that signal transducer and activator of transcription 6 (STAT6) could induce Siglec-G/10 transcription. Interleukin (IL)-4 could upregulate Siglec-G/10 expression significantly via STAT6 activation, as proved by overexpression and inhibition of STAT6. Signal transduction mechanism revealed that Siglec-G/10 could promote TAM differentiation and activation via increasing HIF1α (hypoxia-inducible factor 1α) expression. Furthermore, Siglecg deficiency could enhance the efficacy of immune checkpoint inhibitor, and increase the infiltration and cytotoxic functions of CD8+T cells. CONCLUSIONS: Our results suggest that high Siglec-G/10 expression aggravates the immune suppressive tumor microenvironment and impedes the immunotherapy efficacy in HNSCC, which indicates that targeting Siglec-G/10 may represent a promising therapeutic option for improving the immunotherapy efficacy in HNSCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。