Dominant Effects of Short-Chain Branching on the Initial Stage of Nucleation and Formation of Tie Chains for Bimodal Polyethylene as Revealed by Molecular Dynamics Simulation.

分子动力学模拟揭示短链支化对双峰聚乙烯成核和连接链形成初始阶段的主导作用

阅读:3
作者:Hu Yanling, Shao Yunqi, Liu Zhen, He Xuelian, Liu Boping
The molecular mechanism of short-chain branching (SCB), especially the effects of methylene sequence length (MSL) and short-chain branching distribution (SCBD) on the initial stage of nucleation, the crystallization process, and particularly the tie chain formation process of bimodal polyethylene (BPE), were explored using molecular dynamics simulation. This work constructed two kinds of BPE models in accordance with commercial BPE pipe resins: SCB incorporated in the long chain or in the short chains. The initial stage of nucleation was determined by the MSL of the system, as the critical MSL for a branched chain to nucleate is about 60 CH(2). SCB incorporated in the long chain led to a delay of the initial stage of nucleation relative to the case of SCB incorporated in the short chains. The increase of branch length could accelerate the delay to nucleation. The location of short chain relative to the long chain depended on the MSL of the short chain. As the MSL of the system decreased, the crystallinity decreased, while the tie chains concentration increased. The tie chains concentration of the BPE model with branches incorporated in the long chain was higher than that with branches incorporated in the short chain.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。