Recombinant AAV batch profiling by nanopore sequencing elucidates product-related DNA impurities and vector genome length distribution.

通过纳米孔测序对重组 AAV 批次进行分析,可以阐明产品相关的 DNA 杂质和载体基因组长度分布

阅读:8
作者:Dunker-Seidler Florian, Breunig Kathrin, Haubner Magdalena, Sonntag Florian, Hörer Markus, Feiner Rebecca C
During production, recombinant adeno-associated virus (rAAV) capsids are equipped with heterogeneous genetic payloads including undesired DNA impurities as well as truncated vector genomes. Comprehensive analysis of encapsidated DNA by long-read next-generation sequencing is destined to guide platform optimization and provide crucial insights into safety of gene therapies. We used nanopore sequencing for in-depth profiling of an rAAV9 batch produced using our proprietary split two-plasmid system in a 50-L bioreactor. We compared three methods for single-strand to double-strand DNA conversion and their impact on the sequencing data. We observed a distinct library size profile but comparable impurity distribution. We contrasted recent nanopore sequencing advancements such as the V14 chemistry and dorado basecalling software with the widespread V9 chemistry and detected a markedly increased read quality. Our data highlight a high vector batch quality with low plasmid-derived and host cell DNA impurities of random origin, critical for mitigating associated safety risks. Finally, we compared nanopore data with orthogonal SMRT sequencing data and observed a higher base quality, but largely similar length and impurity profiles. Taken together, nanopore sequencing is a state-of-the-art method for comprehensive, in-depth rAAV vector batch analysis during all stages of gene therapy development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。