Osteopontin-c mediates the upregulation of androgen responsive genes in LNCaP cells through PI3K/Akt and androgen receptor signaling.

骨桥蛋白-c通过PI3K/Akt和雄激素受体信号传导介导LNCaP细胞中雄激素反应基因的上调

阅读:4
作者:Tilli Tatiana Martins, Ferreira Luciana Bueno, Gimba Etel Rodrigues Pereira
Androgen receptor (AR) signaling is a key pathway modulating prostate cancer (PCa) progression. Several steps in this pathway have been investigated in order to propose novel treatment strategies for advanced PCa. Total osteopontin (OPN) has been described as a biomarker for PCa, in addition to its role in activating the progression of this tumor. Based on the known effects of the OPNc splice variant on PCa progression, the present study investigated whether this isoform can also modulate AR signaling. In order to test this, an in vitro model was used in which LNCaP cells were cultured in the presence of conditioned medium (CM) secreted by PCa cells overexpressing OPNc (OPNc-CM). The activation of AR signaling was evaluated by measuring the expression levels of AR-responsive genes (ARGs) using quantitative polymerase chain reaction and specific oligonucleotides. The data demonstrated that all nine tested ARGs (Fgf8, TMPRSS2, Greb1, Cdk2, Ndrg1, Cdk1, Pmepa1, Psa and Ar) are significantly upregulated in response to OPNc-CM compared with LNCaP cells cultured in CM secreted by control cells transfected with empty expression vector. The specific involvement of OPNc was demonstrated by depleting OPNc from OPNc-CM using an anti-OPNc neutralizing antibody. In addition, by using a phosphoinositide 3-kinase (PI3K)-specific inhibitor and AR antagonists, such as flutamide and bicalutamide, it was also observed that upregulation of ARGs in response to OPNc-CM involves PI3K signaling and depends on the AR. In conclusion, these data indicated that OPNc is able to activate AR signaling through the PI3K pathway and the AR. These data further corroborate our previous data, revealing the OPNc splice variant to be a key molecule that is able to modulate key signaling pathways involved in PCa progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。