Systematic Investigation of Dose-Dependent Protein Thermal Stability Changes to Uncover the Mechanisms of the Pleiotropic Effects of Metformin.

系统研究剂量依赖性蛋白质热稳定性变化,以揭示二甲双胍多效性作用的机制

阅读:3
作者:Yin Kejun, Wu Ronghu
Metformin is a widely used drug to treat type II diabetes. Beyond lowering blood sugar, it has been reported to have pleiotropic effects such as suppressing cancer growth and attenuating cell oxidative stress and inflammation. However, the underlying mechanisms of these effects remain to be explored. Here, we systematically study the thermal stability changes of proteins in liver cells (HepG2) induced by a wide dosage range of metformin by using the proteome integral solubility alteration (PISA) assay. The current results demonstrate that, besides the most accepted target of metformin (complex I), low concentrations of metformin (such as 0.2 μM) stabilize the complex IV subunits, suggesting its important role in the sugar-lowering effect. Low-dose metformin also results in stability alterations of ribosomal proteins, correlating with its inhibitive effect on cell proliferation. We further find that low-concentration metformin impacts mitochondrial cargo and vesicle transport, while high-concentration metformin affects cell redox responses and cell membrane protein sorting. This study provides mechanistic insights into the molecular mechanisms of lowering blood sugar and the pleiotropic effects of metformin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。