In adult mammals, neural stem cells (NSCs) generate new neurons that are important for specific types of learning and memory. Controlling adult NSC number and function is fundamental for preserving the stem cell pool and ensuring proper levels of neurogenesis throughout life. Here we study the importance of the microRNA gene cluster miR-106b~25 (miR-106b, miR-93, and miR-25) in primary cultures of neural stem/progenitor cells (NSPCs) isolated from adult mice. We find that knocking down miR-25 decreases NSPC proliferation, whereas ectopically expressing miR-25 promotes NSPC proliferation. Expressing the entire miR-106b~25 cluster in NSPCs also increases their ability to generate new neurons. Interestingly, miR-25 has a number of potential target mRNAs involved in insulin/insulin-like growth factor-1 (IGF) signaling, a pathway implicated in aging. Furthermore, the regulatory region of miR-106b~25 is bound by FoxO3, a member of the FoxO family of transcription factors that maintains adult stem cells and extends lifespan downstream of insulin/IGF signaling. These results suggest that miR-106b~25 regulates NSPC function and is part of a network involving the insulin/IGF-FoxO pathway, which may have important implications for the homeostasis of the NSC pool during aging.
The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation.
microRNA簇miR-106b~25调控成年神经干/祖细胞增殖和神经元分化
阅读:3
作者:Brett Jamie O, Renault Valérie M, Rafalski Victoria A, Webb Ashley E, Brunet Anne
| 期刊: | Aging-Us | 影响因子: | 3.900 |
| 时间: | 2011 | 起止号: | 2011 Feb;3(2):108-24 |
| doi: | 10.18632/aging.100285 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
