Multi-Omics Analysis of the Epigenetic Effects of Inflammation in Murine Type II Pneumocytes.

炎症对小鼠 II 型肺泡细胞表观遗传效应的多组学分析

阅读:3
作者:Fernandez Jenna A, Han Qiyuan, Rajczewski Andrew T, Kono Thomas, Weirath Nicholas A, Lee Alexander S, Rahim Abdur, Tretyakova Natalia Y
Chronic inflammation plays a central role in the pathogenesis of lung diseases including asthma, long COVID, chronic obstructive pulmonary disease (COPD), and lung cancer. Lipopolysaccharide (LPS) is a potent inflammatory agent produced by Gram-negative bacteria and also found in cigarette smoke. Our earlier study revealed that the intranasal exposure of A/J mice to LPS for 7 days altered gene expression levels in alveolar Type II epithelial cells (AECIIs), which serve as precursors to lung adenocarcinoma and are also preferentially targeted by SARS-CoV-2. In the present work, we employed a comprehensive multi-omics approach to characterize changes in DNA methylation/hydroxymethylation, gene expression, and global protein abundances in the AECIIs of A/J mice following the sub-chronic exposure to LPS and after a 4-week recovery period. Exposure to LPS led to hypermethylation at regulatory elements within the genome such as enhancer regions and expression changes in genes known to play a role in lung cancer tumorigenesis. Changes in protein abundance were consistent with an inflammatory phenotype and also included tumor suppressor proteins. Integration of the multi-omics data resulted in a model where LPS-driven inflammation in AECIIs triggers epigenetic changes that, along with genetic mutations, may contribute to lung cancer development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。