Disruption of anthrax toxin receptor 1 in pigs leads to a rare disease phenotype and protection from senecavirus A infection.

猪炭疽毒素受体 1 的破坏会导致罕见的疾病表型,并能保护猪免受塞内卡病毒 A 感染

阅读:9
作者:Chen Paula R, Rowland Raymond R R, Stoian Ana M, Petrovan Vlad, Sheahan Maureen, Ganta Charan, Cino-Ozuna Giselle, Kim Dae Young, Dunleavey James M, Whitworth Kristin M, Samuel Melissa S, Spate Lee D, Cecil Raissa F, Benne Joshua A, Yan Xingyu, Fang Ying, Croix Brad St, Lechtenberg Kelly, Wells Kevin D, Prather Randall S
Senecavirus A (SVA) is a cause of vesicular disease in pigs, and infection rates are rising within the swine industry. Recently, anthrax toxin receptor 1 (ANTXR1) was revealed as the receptor for SVA in human cells. Herein, the role of ANTXR1 as a receptor for SVA in pigs was investigated by CRISPR/Cas9 genome editing. Strikingly, ANTXR1 knockout (KO) pigs exhibited features consistent with the rare disease, GAPO syndrome, in humans. Fibroblasts from wild type (WT) pigs supported replication of SVA; whereas, fibroblasts from KO pigs were resistant to infection. During an SVA challenge, clinical symptoms, including vesicular lesions, and circulating viremia were present in infected WT pigs but were absent in KO pigs. Additional ANTXR1-edited piglets were generated that were homozygous for an in-frame (IF) mutation. While IF pigs presented a GAPO phenotype similar to the KO pigs, fibroblasts showed mild infection, and circulating SVA nucleic acid was decreased in IF compared to WT pigs. Thus, this new ANTXR1 mutation resulted in decreased permissiveness of SVA in pigs. Overall, genetic disruption of ANTXR1 in pigs provides a unique model for GAPO syndrome and prevents circulating SVA infection and clinical symptoms, confirming that ANTXR1 acts as a receptor for the virus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。