Haptotactic Motion of Multivalent Vesicles Along Ligand-Density Gradients.

多价囊泡沿配体密度梯度的触觉趋向运动

阅读:3
作者:Sleath Hannah, Mognetti Bortolo M, Elani Yuval, Di Michele Lorenzo
Multivalent adhesion between cell-membrane receptors and surface- or particle-anchored ligands underpins a range of active cellular processes, such as cell crawling and pathogen invasion. In these circumstances, motion is often caused by gradients in ligand density, which constitutes a simple example of haptotaxis. To unravel the biophysics of a potential passive mechanism for haptotaxis, we have designed an experimental model system in which multivalent lipid vesicles adhere to a substrate and migrate toward higher ligand densities. Adhesion occurs via vesicle-anchored receptors and substrate-anchored ligands, both consisting of synthetic DNA linkers that allow precise control over binding strength. Experimental data, rationalized through numerical and theoretical models, reveal that motion directionality is correlated to both binding strength and vesicle size. Besides providing insights into a potential mechanism for adhesive haptotaxis, our results highlight design rules applicable to the future development of biomimetic systems capable of directed motion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。