Cannabidiol Mitigates Deoxynivalenol-Induced Intestinal Toxicity by Regulating Inflammation, Oxidative Stress, and Barrier Integrity.

大麻二酚通过调节炎症、氧化应激和屏障完整性来减轻脱氧雪腐镰刀菌烯醇引起的肠道毒性

阅读:3
作者:Yang Lingchen, Decas Tristan, Zhang Yuhang, Alassane-Kpembi Imourana
The deoxynivalenol (DON) mycotoxin poses serious health risks, especially to swine, which are highly susceptible to intestinal damage. Existing strategies to counteract DON toxicity remain insufficient. This study aimed to evaluate the protective effects of cannabidiol (CBD), a phytocannabinoid with anti-inflammatory properties, against DON-induced intestinal toxicity in porcine intestinal epithelial cells. Using differentiated and proliferating porcine intestinal epithelial cells (IPEC-J2), we evaluated CBD (2.5-5 μM) against DON (0.5-50 μM) through viability assays, apoptosis markers (Bax/Bcl-2 ratio), inflammatory mediators (NFκB, IL-6, COX-2), oxidative stress indicators (TXNIP, SOD1, CAT), tight junction gene expression (Claudin-1, Occludin), and barrier permeability. DON exhibited dose- and time-dependent cytotoxicity (IC(50) = 2.60 μM at 24 h; 1.07 μM at 48 h). Pre-treatment with 5 μM CBD restored cell viability at low DON concentrations (0.5-2 μM) but failed at ≥8 μM. In differentiated cells, CBD suppressed apoptosis (reduced Bax/Bcl-2 ratio), oxidative stress (downregulated TXNIP; restored CAT expression), and inflammation (decreased IL-6 and COX-2) under high-dose DON (50 μM), while enhancing tight junction protein expression and barrier integrity at 5 μM DON. Conversely, in proliferating cells, CBD exacerbated apoptosis (elevated Bax/Bcl-2 ratio) and inflammatory responses (upregulated IL-6 and COX-2) at subtoxic levels of DON (2 μM). CBD alone induced cytotoxicity at ≥10 μM. Our findings demonstrate that CBD exhibits context-dependent efficacy, providing protection in differentiated epithelia under moderate DON exposure (≤5 μM) but exhibiting detrimental effects in proliferating cells. Its narrow therapeutic window and paradoxical actions necessitate cautious application. These findings position CBD as a potential adjunctive therapy for DON detoxification but highlight critical limitations for standalone use.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。