DNA damage decreases genome stability and alters genetic information in all organisms. Conserved protein complexes have been evolved for DNA repair in eukaryotes, such as the structural maintenance complex 5/6 (SMC5/6), a chromosomal ATPase involved in DNA double-strand break (DSB) repair. Several factors have been identified for recruitment of SMC5/6 to DSBs, but this complex is also associated with chromosomes under normal conditions; how SMC5/6 dissociates from its original location and moves to DSB sites is completely unknown. In this study, we determined that SWI3B, a subunit of the SWI/SNF complex, is an SMC5-interacting protein in Arabidopsis thialiana Knockdown of SWI3B or SMC5 results in increased DNA damage accumulation. During DNA damage, SWI3B expression is induced, but the SWI3B protein is not localized at DSBs. Notably, either knockdown or overexpression of SWI3B disrupts the DSB recruitment of SMC5 in response to DNA damage. Overexpression of a cotranscriptional activator ADA2b rescues the DSB localization of SMC5 dramatically in the SWI3B-overexpressing cells but only weakly in the SWI3B knockdown cells. Biochemical data confirmed that ADA2b attenuates the interaction between SWI3B and SMC5 and that SWI3B promotes the dissociation of SMC5 from chromosomes. In addition, overexpression of SMC5 reduces DNA damage accumulation in the SWI3B knockdown plants. Collectively, these results indicate that the presence of an appropriate level of SWI3B enhances dissociation of SMC5 from chromosomes for its further recruitment at DSBs during DNA damage in plant cells.
A SWI/SNF subunit regulates chromosomal dissociation of structural maintenance complex 5 during DNA repair in plant cells.
SWI/SNF 亚基在植物细胞 DNA 修复过程中调节结构维持复合物 5 的染色体解离
阅读:3
作者:Jiang Jieming, Mao Ning, Hu Huan, Tang Jiahang, Han Danlu, Liu Song, Wu Qian, Liu Yiyang, Peng Changlian, Lai Jianbin, Yang Chengwei
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2019 | 起止号: | 2019 Jul 23; 116(30):15288-15296 |
| doi: | 10.1073/pnas.1900308116 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
