Clearance kinetics of the VGF-derived neuropeptide TLQP-21.

VGF衍生神经肽TLQP-21的清除动力学

阅读:3
作者:Guo ZengKui, Sahu Bhavani S, He Rongjun, Finan Brian, Cero Cheryl, Verardi Raffaello, Razzoli Maria, Veglia Gianluigi, Di Marchi Richard D, Miles John M, Bartolomucci Alessandro
TLQP-21 is a multifunctional neuropeptide and a promising new medicinal target for cardiometabolic and neurological diseases. However, to date its clearance kinetics and plasma stability have not been studied. The presence of four arginine residues led us to hypothesize that its half-life is relatively short. Conversely, its biological activities led us to hypothesize that the peptide is still taken up by adipose tissues effectively. [(125)I]TLQP-21 was i.v. administered in rats followed by chasing the plasma radioactivity and assessing tissue uptake. Plasma stability was measured using LC-MS. In vivo lipolysis was assessed by the palmitate rate of appearance. RESULTS: A small single i.v. dose of [(125)I]TLQP-21 had a terminal half-life of 110 min with a terminal clearance rate constant, k(t), of 0.0063/min, and an initial half-life of 0.97 min with an initial clearance rate constant, k(i), of 0.71/min. The total net uptake by adipose tissue accounts for 4.4% of the entire dose equivalent while the liver, pancreas and adrenal gland showed higher uptake. Uptake by the brain was negligible, suggesting that i.v.-injected peptide does not cross the blood-brain-barrier. TLQP-21 sustained isoproterenol-stimulated lipolysis in vivo. Finally, TLQP-21 was rapidly degraded producing several N-terminal and central sequence fragments after 10 and 60 min in plasma in vitro. This study investigated the clearance and stability of TLQP-21 peptide for the first time. While its pro-lipolytic effect supports and extends previous findings, its short half-life and sequential cleavage in the plasma suggest strategies for chemical modifications in order to enhance its stability and therapeutic efficacy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。