Pathways for the regulation of hepcidin expression in anemia of chronic disease and iron deficiency anemia in vivo.

慢性病贫血和缺铁性贫血体内铁调素表达调控途径

阅读:3
作者:Theurl Igor, Schroll Andrea, Nairz Manfred, Seifert Markus, Theurl Milan, Sonnweber Thomas, Kulaksiz Hasan, Weiss Guenter
BACKGROUND: Increased levels of hepcidin, the master regulator of iron homeostasis, contribute to the diversion of iron underlying the anemia of chronic disease. Yet hepcidin levels are low in anemia of chronic disease with concomitant true iron deficiency. Here we clarify the different underlying pathways regulating hepcidin expression under these conditions in vivo. DESIGN AND METHODS: We used rat models of iron deficiency anemia, anemia of chronic disease and anemia of chronic disease with concomitant true iron deficiency and investigated upstream signaling pathways controlling hepcidin transcription in the liver. Protein and mRNA levels of iron metabolism genes and genes involved in SMAD1/5/8 and STAT3 signaling were determined by RT-PCR, Western blotting and immunohistochemistry. RESULTS: SMAD1/5/8 phosphorylation and in parallel hepcidin mRNA expression were increased in anemia of chronic disease but significantly down-regulated in anemia of chronic disease with concomitant iron deficiency, either on the basis of phlebotomy or dietary iron restriction. Iron deficiency resulted in reduced bone morphogenetic protein-6 expression and impaired SMAD1/5/8 phosphorylation and trafficking, two key events for hepcidin transcription. Reduced SMAD1/5/8 activity in association with phlebotomy was paralleled by increased expression of the inhibitory factor, SMAD7, dietary iron restriction appeared to impair hepcidin transactivating SMAD pathways via reduction of membrane bound hemojuvelin expression. CONCLUSIONS: This study evaluated hepcidin signaling pathways in anemia of chronic disease with/without concomitant iron deficiency in vivo. While iron deficiency in general decreased bone morphogenetic protein-6 expression, phlebotomy or dietary iron restriction inhibited inflammation driven SMAD1/5/8 mediated hepcidin formation by different pathways, indicating alternate hierarchic signaling networks as a function of the mode and kinetics of iron deficiency. Nonetheless, iron deficiency inducible regulatory pathways can reverse inflammation mediated stimulation of hepcidin expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。