PanIN and CAF transitions in pancreatic carcinogenesis revealed with spatial data integration

利用空间数据整合揭示胰腺癌发生过程中 PanIN 和 CAF 的转变

阅读:1
作者:Alexander T F Bell ,Jacob T Mitchell ,Ashley L Kiemen ,Melissa Lyman ,Kohei Fujikura ,Jae W Lee ,Erin Coyne ,Sarah M Shin ,Sushma Nagaraj ,Atul Deshpande ,Pei-Hsun Wu ,Dimitrios N Sidiropoulos ,Rossin Erbe ,Jacob Stern ,Rena Chan ,Stephen Williams ,James M Chell ,Lauren Ciotti ,Jacquelyn W Zimmerman ,Denis Wirtz ,Won Jin Ho ,Neeha Zaidi ,Elizabeth Thompson ,Elizabeth M Jaffee ,Laura D Wood ,Elana J Fertig ,Luciane T Kagohara

Abstract

This study introduces a new imaging, spatial transcriptomics (ST), and single-cell RNA-sequencing integration pipeline to characterize neoplastic cell state transitions during tumorigenesis. We applied a semi-supervised analysis pipeline to examine premalignant pancreatic intraepithelial neoplasias (PanINs) that can develop into pancreatic ductal adenocarcinoma (PDAC). Their strict diagnosis on formalin-fixed and paraffin-embedded (FFPE) samples limited the single-cell characterization of human PanINs within their microenvironment. We leverage whole transcriptome FFPE ST to enable the study of a rare cohort of matched low-grade (LG) and high-grade (HG) PanIN lesions to track progression and map cellular phenotypes relative to single-cell PDAC datasets. We demonstrate that cancer-associated fibroblasts (CAFs), including antigen-presenting CAFs, are located close to PanINs. We further observed a transition from CAF-related inflammatory signaling to cellular proliferation during PanIN progression. We validate these findings with single-cell high-dimensional imaging proteomics and transcriptomics technologies. Altogether, our semi-supervised learning framework for spatial multi-omics has broad applicability across cancer types to decipher the spatiotemporal dynamics of carcinogenesis. Keywords: Visium; Xenium; imaging mass cytometry; machine learning; multi-omics; pancreatic adenocarcinoma; pancreatic intraepithelial neoplasia; spatial transcriptomics; transfer learning.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。