Enzyme nanoencapsulation holds an enormous potential to develop new therapeutic approaches to a large set of human pathologies including cancer, infectious diseases and inherited metabolic disorders. However, enzyme formulation has been limited by the need to maintain the catalytic function, which is governed by protein conformation. Herein we report the rational design of a delivery system based on chitosan for effective encapsulation of a functionally and structurally complex human metabolic enzyme through ionic gelation with tripolyphosphate. The rationale was to use a mild methodology to entrap the multimeric multidomain 200 kDa human phenylalanine hydroxylase (hPAH) in a polyol-like matrix that would allow an efficient maintenance of protein structure and function, avoiding formulation stress conditions. Through an in silico and in vitro based development, the particulate system was optimized with modulation of nanomaterials protonation status, polymer, counterion and protein ratios, taking into account particle size, polydispersity index, surface charge, particle yield production, protein free energy of folding, electrostatic surface potential, charge, encapsulation efficiency, loading capacity and transmission electron microscopy morphology. Evaluation of the thermal stability, substrate binding profile, relative enzymatic activity, and substrate activation ratio of the encapsulated hPAH suggests that the formulation procedure does not affect protein stability, allowing an effective maintenance of hPAH biological function. Hence, this study provides an important framework for an enzyme formulation process.
In Silico and In Vitro Tailoring of a Chitosan Nanoformulation of a Human Metabolic Enzyme.
利用计算机模拟和体外方法对人代谢酶的壳聚糖纳米制剂进行定制
阅读:3
作者:Lino Paulo R, Leandro João, Amaro Mariana, Gonçalves LÃdia M D, Leandro Paula, Almeida António J
| 期刊: | Pharmaceutics | 影响因子: | 5.500 |
| 时间: | 2021 | 起止号: | 2021 Mar 4; 13(3):329 |
| doi: | 10.3390/pharmaceutics13030329 | 种属: | Human |
| 研究方向: | 代谢 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
