IFITMs exhibit antiviral activity against Chikungunya and Zika virus infection via the alteration of TLRs and RLRs signaling pathways.

IFITMs 通过改变 TLR 和 RLR 信号通路,对基孔肯雅病毒和寨卡病毒感染表现出抗病毒活性

阅读:11
作者:Gumpangseth Nuttamonpat, Villarroel Paola Mariela Saba, Diack Abibatou, Songhong Thanaphon, Yainoy Sakda, Hamel Rodolphe, Khanom Wipaporn, Koomhin Phanit, Punsawad Chuchard, Srikiatkhachorn Anon, Missé Dorothée, Saetear Phoonthawee, Wichit Sineewanlaya
Chikungunya virus (CHIKV) poses a significant challenge as there are currently no targeted antiviral drugs or vaccines to combat this infection. Here, we demonstrate that interferon-induced transmembrane proteins (IFITMs), including IFITM1, IFITM2, and IFITM3, which are interferon-stimulated genes (ISGs), inhibit CHIKV infection in human skin fibroblasts. Overexpression of IFITMs in cells restricts viral infection, whereas knockdown of IFITMs enhances viral infection. IFITMs overexpression causes a substantial upregulation of antiviral genes, namely TLR3, TLR7, TLR8, and TLR9, and their downstream signaling molecules such as TRADD, IRAK1, TRAF6, and MAP3K7, involved in TLRs signaling pathways. Furthermore, the DHX58 gene encoding the LGP2 protein, a negative regulator of RIG-I in RLRs signaling pathways, was downregulated in the overexpressed cells. Transcription factors including interferon regulatory factors (IRF) 3/5/7, which are downstream signaling components of both TLR and RLR signaling pathways, were also upregulated, resulting in enhanced IFNs signaling. IFITMs not only inhibits the early and late stages of viral infection but can also alter the antiviral innate-immune response to restrict CHIKV infection in human skin fibroblasts. Additionally, IFITMs exhibit their antiviral activity against Zika virus (ZIKV). Altogether, these results show the broad-spectrum antiviral property of IFITMs against arboviruses in foreskin cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。