The widely conserved pst-phoU operon encodes a low-velocity, high-affinity, ATP-dependent importer for inorganic phosphate (Pi). The pstB gene encodes the ATPase that powers the import of Pi into the cell. In some Firmicutes, including the gastrointestinal commensal and opportunistic pathogen Enterococcus faecalis, the pst-phoU locus contains adjacent pstB genes. In this work, we compared the functionality of E. faecalis pstB1 and pstB2. E. faecalis pstB1 and pstB2 share sequence similarities with verified PstB ATPases from Escherichia coli and Streptococcus pneumoniae and only share ~60% amino acid identity with each other. Deletion of pstB1 was associated with a growth defect in low Pi-containing chemically defined medium (CDM), reduced Pi uptake, and a moderate increase in alkaline phosphatase (AP) activity. Deletion of pstB2 fully inhibited growth in CDM regardless of inorganic phosphorus source but did not hinder growth in rich, undefined medium. The ÎpstB2 mutant also exhibited a significant increase in AP activity that was associated with extracellular Pi accumulation. Overexpression of pstB2 in the pstB1 mutant was sufficient to restore growth in low-Pi CDM, Pi uptake, and AP activity, but this was not recapitulated with overexpression of pstB1 in the ÎpstB2 mutant. Deletion of either pstB paralog increased expression of the tandem paralog, and overexpression of pstB2 in ÎpstB2 reduced pstB1 expression. These results suggest that the E. faecalis pstB2-encoded ATPase is required for Pi import, while the pstB1-encoded ATPase has an accessory role in Pi import that can be duplicated by the presence of excess PstB2. IMPORTANCE: Phosphate is critical for all microbial life. In many bacteria, inorganic phosphate (Pi) is imported by the high-affinity, low-velocity Pst-PhoU system. The pstB gene encodes the ATPase that powers Pi import. The pst-phoU operon in many Firmicutes, including the human commensal and opportunistic pathogen Enterococcus faecalis, contains adjacent pstB genes, pstB1 and pstB2. No studies on the relative biological contributions of tandem pstB paralogs in any microbe have been published. This genetic study indicates that E. faecalis pstB1 and pstB2 do not have equivalent functions. The pstB2 gene encodes an ATPase that is required for Pi import, while the ATPase encoded by pstB1 has an accessory role in Pi import that can be duplicated by the presence of excess PstB2.
The adjacent ATP-binding protein-encoding genes of the Enterococcus faecalis phosphate-specific transport (pst) locus have non-overlapping cellular functions.
粪肠球菌磷酸盐特异性转运(pst)基因座的相邻 ATP 结合蛋白编码基因具有不重叠的细胞功能
阅读:10
作者:Healy Christopher M, Pham Evelyn A, Dye Keane J, Rouchon Candace N, McMillan Biko, Frank Kristi L
| 期刊: | Journal of Bacteriology | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 May 22; 207(5):e0003325 |
| doi: | 10.1128/jb.00033-25 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
