High-dimensional multiplexed imaging can reveal the spatial organization of tumour tissues at the molecular level. However, owing to the scale and information complexity of the imaging data, it is challenging to discover and thoroughly characterize the heterogeneity of tumour microenvironments. Here we show that self-supervised representation learning on data from imaging mass cytometry can be leveraged to distinguish morphological differences in tumour microenvironments and to precisely characterize distinct microenvironment signatures. We used self-supervised masked image modelling to train a vision transformer that directly takes high-dimensional multiplexed mass-cytometry images. In contrast with traditional spatial analyses relying on cellular segmentation, the vision transformer is segmentation-free, uses pixel-level information, and retains information on the local morphology and biomarker distribution. By applying the vision transformer to a lung-tumour dataset, we identified and validated a monocytic signature that is associated with poor prognosis.
Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data.
通过对多重成像数据进行无分割表示学习来表征肿瘤异质性
阅读:4
作者:Tan Jimin, Le Hortense, Deng Jiehui, Liu Yingzhuo, Hao Yuan, Hollenberg Michelle, Liu Wenke, Wang Joshua M, Xia Bo, Ramaswami Sitharam, Mezzano Valeria, Loomis Cynthia, Murrell Nina, Moreira Andre L, Cho Kyunghyun, Pass Harvey I, Wong Kwok-Kin, Ban Yi, Neel Benjamin G, Tsirigos Aristotelis, Fenyö David
| 期刊: | Nature Biomedical Engineering | 影响因子: | 26.600 |
| 时间: | 2025 | 起止号: | 2025 Mar;9(3):405-419 |
| doi: | 10.1038/s41551-025-01348-1 | 研究方向: | 肿瘤 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
