High-dimensional multiplexed imaging can reveal the spatial organization of tumour tissues at the molecular level. However, owing to the scale and information complexity of the imaging data, it is challenging to discover and thoroughly characterize the heterogeneity of tumour microenvironments. Here we show that self-supervised representation learning on data from imaging mass cytometry can be leveraged to distinguish morphological differences in tumour microenvironments and to precisely characterize distinct microenvironment signatures. We used self-supervised masked image modelling to train a vision transformer that directly takes high-dimensional multiplexed mass-cytometry images. In contrast with traditional spatial analyses relying on cellular segmentation, the vision transformer is segmentation-free, uses pixel-level information, and retains information on the local morphology and biomarker distribution. By applying the vision transformer to a lung-tumour dataset, we identified and validated a monocytic signature that is associated with poor prognosis.
Characterization of tumour heterogeneity through segmentation-free representation learning on multiplexed imaging data.
通过对多重成像数据进行无分割表示学习来表征肿瘤异质性
阅读:14
作者:Tan Jimin, Le Hortense, Deng Jiehui, Liu Yingzhuo, Hao Yuan, Hollenberg Michelle, Liu Wenke, Wang Joshua M, Xia Bo, Ramaswami Sitharam, Mezzano Valeria, Loomis Cynthia, Murrell Nina, Moreira Andre L, Cho Kyunghyun, Pass Harvey I, Wong Kwok-Kin, Ban Yi, Neel Benjamin G, Tsirigos Aristotelis, Fenyö David
| 期刊: | Nature Biomedical Engineering | 影响因子: | 26.600 |
| 时间: | 2025 | 起止号: | 2025 Mar;9(3):405-419 |
| doi: | 10.1038/s41551-025-01348-1 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
