Myricitrin Alleviates Oxidative Stress-induced Inflammation and Apoptosis and Protects Mice against Diabetic Cardiomyopathy.

杨梅素可减轻氧化应激引起的炎症和细胞凋亡,并保护小鼠免受糖尿病心肌病的侵害

阅读:3
作者:Zhang Bin, Shen Qiang, Chen Yaping, Pan Ruile, Kuang Shihuan, Liu Guiyan, Sun Guibo, Sun Xiaobo
Diabetic cardiomyopathy (DCM) has been increasingly considered as a main cause of heart failure and death in diabetic patients. At present, no effective treatment exists to prevent its development. In the present study, we describe the potential protective effects and mechanisms of myricitrin (Myr) on the cardiac function of streptozotosin-induced diabetic mice and on advanced glycation end products (AGEs)-induced H9c2 cardiomyocytes. In vitro experiments revealed that pretreatment with Myr significantly decreased AGEs-induced inflammatory cytokine expression, limited an increase in ROS levels, and reduced cell apoptosis, fibrosis, and hypertrophy in H9c2 cells. These effects are correlated with Nrf2 activation and NF-κB inhibition. In vivo investigation demonstrated that oral administration of Myr at 300 mg/kg/day for 8 weeks remarkably decreased the expression of enzymes associated with cardiomyopathy, as well as the expression of inflammatory cytokines and apoptotic proteins. Finally, Myr improved diastolic dysfunction and attenuated histological abnormalities. Mechanistically, Myr attenuated diabetes-induced Nrf2 inhibition via the regulation of Akt and ERK phosphorylation in the diabetic heart. Collectively, these results strongly indicate that Myr exerts cardioprotective effects against DCM through the blockage of inflammation, oxidative stress, and apoptosis. This suggests that Myr might be a potential therapeutic agent for the treatment of DCM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。