PURPOSE: We employed a metabolomics-based approach with the goal to better understand the molecular signatures of glioblastoma cells and tissues, with an aim toward identifying potential targetable biomarkers for developing more effective and novel therapies. EXPERIMENTAL DESIGN: We used liquid chromatography coupled with mass spectrometry (LC-MS/Q-TOF and LC-MS/QQQ) for the discovery and validation of metabolites from primary and established glioblastoma cells, glioblastoma tissues, and normal human astrocytes. RESULTS: We identified tryptophan, methionine, kynurenine, and 5-methylthioadenosine as differentially regulated metabolites (DRM) in glioblastoma cells compared with normal human astrocytes (NHAs). Unlike NHAs, glioblastoma cells depend on dietary methionine for proliferation, colony formation, survival, and to maintain a deregulated methylome (SAM:SAH ratio). In methylthioadenosine phosphorylase (MTAP)-deficient glioblastoma cells, expression of MTAP transgene did not alter methionine dependency, but compromised tumor growth in vivo We discovered that a lack of the kynurenine-metabolizing enzymes kynurenine monooxygenase and/or kynureninase promotes the accumulation of kynurenine, which triggers immune evasion in glioblastoma cells. In silico analysis of the identified DRMs mapped the activation of key oncogenic kinases that promotes tumorigenesis in glioblastoma. We validated this result by demonstrating that the exogenous addition of DRMs to glioblastoma cells in vitro results in oncogene activation as well as the simultaneous downregulation of Ser/Thr phosphatase PP2A. CONCLUSIONS: We have connected a four-metabolite signature, implicated in the methionine and kynurenine pathways, to the promotion and maintenance of glioblastoma. Together, our data suggest that these metabolites and their respective metabolic pathways serve as potential therapeutic targets for glioblastoma. Clin Cancer Res; 22(14); 3513-23. ©2016 AACR.
Methionine and Kynurenine Activate Oncogenic Kinases in Glioblastoma, and Methionine Deprivation Compromises Proliferation.
蛋氨酸和犬尿氨酸激活胶质母细胞瘤中的致癌激酶,而蛋氨酸缺乏会损害增殖
阅读:3
作者:Palanichamy Kamalakannan, Thirumoorthy Krishnan, Kanji Suman, Gordon Nicolaus, Singh Rajbir, Jacob John R, Sebastian Nikhil, Litzenberg Kevin T, Patel Disha, Bassett Emily, Ramasubramanian Brinda, Lautenschlaeger Tim, Fischer Steven M, Ray-Chaudhury Abhik, Chakravarti Arnab
| 期刊: | Clinical Cancer Research | 影响因子: | 10.200 |
| 时间: | 2016 | 起止号: | 2016 Jul 15; 22(14):3513-23 |
| doi: | 10.1158/1078-0432.CCR-15-2308 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
