Phosphatidic acid induces cytoskeletal rearrangements through the Src-FAK-RhoA/ROCK signaling pathway during decidualization.

磷脂酸在蜕膜化过程中通过 Src-FAK-RhoA/ROCK 信号通路诱导细胞骨架重组

阅读:3
作者:Jun Hyeon-Jeong, Lee So Young, Park Shin-Young, Choi Joong Sub, Yoon Mee-Sup, Han Joong-Soo
Decidualization, the transformation of human endometrial stromal cells from a fibroblast-like to a rounded morphology, is crucial for creating a receptive intrauterine environment that supports successful embryo implantation. While decidual markers such as insulin-like growth factor-binding protein 1 and prolactin are well studied, the specific signaling mechanisms underlying morphological changes during decidualization remain unclear. In this study, we identified the phosphatidic acid (PA)-Src-focal adhesion kinase (FAK)-RhoA/Rho-associated protein kinase (ROCK) signaling pathway as a critical regulator of cytoskeletal rearrangement during PA-induced decidualization in human endometrial stromal cells. PA, a product of phospholipase D1, activates FAK, initiating a cascade of events involving Src-family kinases and RhoA signaling, ultimately leading to the cytoskeletal changes necessary for decidualization. Our in vitro experiments showed that PA-induced decidualization involved the formation of stress fibers mediated by ROCK activation. The traditional decidual markers, insulin-like growth factor-binding protein 1 and prolactin, did not significantly influence these morphological changes, suggesting that the PA-induced pathway operates independently of these markers. In vivo studies in ovariectomized mice demonstrated that PA injection into the uterine horn increased the uterine cavity weight and wall thickness, reinforcing the role of PA in promoting decidualization. These findings highlight the importance of the PA-Src-FAK-RhoA-ROCK pathway in regulating cytoskeletal dynamics during decidualization and suggest potential therapeutic targets for addressing implantation-associated infertility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。