Insights into the role of hnRNPK in spermatogenesis via the piRNA pathway.

通过 piRNA 通路深入了解 hnRNPK 在精子发生中的作用

阅读:4
作者:Xu Haixia, Guo Jiahua, Huang Yueru, Zhang Mengjia, Wang Yuxi, Xia Lianren, Cheng Xiaofang, Meng Tiantian, Hao Ruijie, Wei Xuefeng, Li Cencen, Zhang Pengpeng, Xu Yongjie
Deletion of hnRNPK in mouse spermatogonia leads to male sterility due to arrest permatogenesis, yet the underlying molecular mechanisms remain elusive. This study investigated the testicular proteome on postnatal day 28 (P28) to elucidate the infertility associated with Hnrnpk deficiency, identifying 791 proteins with altered expression: 256 were upregulated, and 535 were downregulated. Pathway enrichment analysis demonstrated that the downregulated proteins are primarily involved in spermatogenesis, fertilization, and piRNA metabolic processes. In Hnrnpk cKO mice, key proteins essential for piRNA metabolism, such as PIWIL1, TDRD7, DDX4, and MAEL, exhibited reduced expression, resulting in impaired piRNA production. Mechanistic studies employing RNA immunoprecipitation (RIP), dual-luciferase reporter assays, and fluorescence in situ hybridization/immunofluorescence (FISH/IF) assays demonstrated that hnRNPK directly interacts with the 3'UTR of piRNA pathway transcripts, enhancing their translational efficiency. These results establish that Hnrnpk deficiency disrupts the piRNA pathway by diminishing the expression of essential regulatory proteins, thereby impairing piRNA production and spermatogenesis. Our findings elucidate a novel molecular basis for infertility linked to hnRNPK dysfunction and advance understanding of post-transcriptional regulation in male germ cell development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。