Genetic and genomewide analysis of simultaneous mutations in acetylated and methylated lysine residues in histone H3 in Saccharomyces cerevisiae

酿酒酵母组蛋白 H3 中乙酰化和甲基化赖氨酸残基同时突变的遗传和全基因组分析

阅读:5
作者:Yi Jin, Amy M Rodriguez, John J Wyrick

Abstract

Acetylated and methylated lysine residues in histone H3 play important roles in regulating yeast gene expression and other cellular processes. Previous studies have suggested that histone H3 acetylated and methylated lysine residues may functionally interact through interdependent pathways to regulate gene transcription. A common genetic test for functional interdependence is to characterize the phenotype of a double mutant. Using this strategy, we tested the genetic interaction between histone H3 mutant alleles that simultaneously eliminate acetylated or methylated lysine residues. Our results indicate that mutation of histone H3 acetylated lysine residues alleviates growth phenotypes exhibited by the H3 methylated lysine mutant. In contrast, histone H3 acetylated and methylated lysine mutants display largely independent effects on yeast gene expression. Intriguingly, these expression changes are preferentially associated with chromosomal regions in which histone H3 lysine residues are hypoacetylated and hypomethylated. Finally, we show that the acetylated and methylated lysine mutants have strikingly different effects on the binding of Sir4 to yeast telomeres, suggesting that histone H3 acetylated lysine residues regulate yeast silencing through a mechanism independent of SIR binding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。