Protein release from highly charged peptide hydrogel networks

高电荷肽水凝胶网络释放蛋白质

阅读:6
作者:Katelyn Nagy-Smith, Yuji Yamada, Joel P Schneider

Abstract

Hydrogels are useful delivery vehicles for therapeutic proteins. The ability to control the rate of protein release is paramount to a gel's utility and, in part, defines its clinical application. Electrostatic interactions made between encapsulated protein and a gel's network represents one modality in which protein motility can be controlled. For many gels this strategy works well under low ionic strength solution conditions, but dramatically less so in solutions of physiologically relevant ionic strength where electrostatic interactions are more effectively screened. Herein, we find that highly charged self-assembling peptides can be used to prepare fibrillar hydrogels of sufficient electropotential to allow electrostatic-based control over protein release under physiological buffer conditions. Rheology shows that proteins, differing significantly in their isoelectric point, can be directly encapsulated within negatively- or positively-charged peptide hydrogel networks during the peptide self-assembly event leading to gelation. Bulk adsorption studies coupled with transmission electron microscopy shows that electrostatic interactions drive the association of protein to oppositely charged fibrils in the final gel state, which in turn, dictates the diffusion and retention of these macromolecules in the hydrogel network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。