Study of macrophage functions in murine J774 cells and human activated THP-1 cells exposed to oritavancin, a lipoglycopeptide with high cellular accumulation

研究小鼠 J774 细胞和人类活化 THP-1 细胞暴露于奥利万星(一种具有高细胞蓄积性的脂糖肽)后的巨噬细胞功能

阅读:7
作者:Sandrine Lemaire, Marie-Paule Mingeot-Leclercq, Paul M Tulkens, Françoise Van Bambeke

Abstract

Oritavancin, a lipoglycopeptide antibiotic in development, accumulates to high levels in the lysosomes of eukaryotic cells. We examined specific functions of macrophages (phagocytic capacity, lysosomal integrity, metabolic activity, and production of reactive oxygen species [ROS]) in correlation with the cellular accumulation of the drug, using J774 mouse macrophages and THP-1 human monocytes differentiated into macrophages using phorbol 12-myristate 13-acetate. Oritavancin did not affect Pseudomonas aeruginosa phagocytosis, lysosomal integrity, or metabolic activity in cells incubated for 3 h with extracellular concentrations ranging from 5 to 50 μg/ml. At extracellular concentrations of ≥25 μg/ml, oritavancin reduced latex bead phagocytosis by approximately 50% and doubled ROS production in J774 macrophages only. This may result from the fact that the cellular accumulation of oritavancin was 15 times higher in J774 cells than in activated THP-1 cells at 3 h. Human pharmacokinetic studies estimate that the concentration of oritavancin in alveolar macrophages could reach approximately 560 μg/ml after administration of a cumulative dose of 4 g, which is below the cellular concentration needed in the present study to impair latex bead phagocytosis (1,180 μg/ml) or to stimulate ROS production (15,000 μg/ml) by J774 cells. The data, therefore, suggest that, in spite of its substantial cellular accumulation, oritavancin is unlikely to markedly affect macrophage functions under the conditions of use investigated in current phase III trials (a single dose of 1,200 mg).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。