Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation

体感刺激过程中血管区室动力学的深度分辨光学成像和显微镜检查

阅读:5
作者:Elizabeth M C Hillman, Anna Devor, Matthew B Bouchard, Andrew K Dunn, G W Krauss, Jesse Skoch, Brian J Bacskai, Anders M Dale, David A Boas

Abstract

The cortical hemodynamic response to somatosensory stimulus is investigated at the level of individual vascular compartments using both depth-resolved optical imaging and in-vivo two-photon microscopy. We utilize a new imaging and spatiotemporal analysis approach that exploits the different characteristic dynamics of responding arteries, arterioles, capillaries and veins to isolate their three-dimensional spatial extent within the cortex. This spatial delineation is validated using vascular casts. Temporal delineation is supported by in-vivo two-photon microscopy of the temporal dynamics and vascular mechanisms of the arteriolar and venous responses. Using these techniques we have been able to characterize the roles of the different vascular compartments in generating and controlling the hemodynamic response to somatosensory stimulus. We find that changes in arteriolar total hemoglobin concentration agree well with arteriolar dilation dynamics, which in turn correspond closely with changes in venous blood flow. For 4-s stimuli, we see only small changes in venous hemoglobin concentration, and do not detect measurable dilation or ballooning in the veins. Instead, we see significant evidence of capillary hyperemia. We compare our findings to historical observations of the composite hemodynamic response from other modalities including functional magnetic resonance imaging. Implications of our results are discussed with respect to mathematical models of cortical hemodynamics, and to current theories on the mechanisms underlying neurovascular coupling. We also conclude that our spatiotemporal analysis approach is capable of isolating and localizing signals from the capillary bed local to neuronal activation, and holds promise for improving the specificity of other hemodynamic imaging modalities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。