Functional Synergy Of Antimicrobial Peptides And Chlorhexidine Acetate Against Gram-Negative/Gram-Positive Bacteria And A Fungus In Vitro And In Vivo

抗菌肽和醋酸氯己定在体外和体内对抗革兰氏阴性/革兰氏阳性细菌和真菌的功能协同作用

阅读:5
作者:Jie Zhu, Yibing Huang, Mingxia Chen, Cuihua Hu, Yuxin Chen

Background and purpose

To reduce the resistance and allergic reaction to chlorhexidine acetate (CHA) in the current treatment of (Bacterial vaginosis) BV and (vulvovaginal candidiasis) VVC in female vaginitis. In this study, the antimicrobial activities and mechanism of action of the synergistic effects of antimicrobial peptides (AMPs) HPRP-A1 and HPRP-A2, and CHA, against Gram-negative and Gram-positive bacteria, and one fungus Candida albicans (C. albicans) were investigated in vitro and in mouse and rat vaginitis infection models in vivo.

Conclusion

This study may prompt the development of new drug combinations against vaginitis infections, including mixed bacterial and fungal infections and multi-drug-resistant infections.

Purpose

To reduce the resistance and allergic reaction to chlorhexidine acetate (CHA) in the current treatment of (Bacterial vaginosis) BV and (vulvovaginal candidiasis) VVC in female vaginitis. In this study, the antimicrobial activities and mechanism of action of the synergistic effects of antimicrobial peptides (AMPs) HPRP-A1 and HPRP-A2, and CHA, against Gram-negative and Gram-positive bacteria, and one fungus Candida albicans (C. albicans) were investigated in vitro and in mouse and rat vaginitis infection models in vivo.

Results

HPRP-A1, HPRP-A2 and CHA showed significant synergistic effects on the antimicrobial activities against different Gram-negative and Gram-positive bacteria and C. albicans. The combined application of HPRP-A2 and CHA exhibited strong synergistic effects in the mouse and rat vaginitis models caused by bacteria or C. albicans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。