TGF-β1 and TNF-α synergistically induce epithelial to mesenchymal transition of breast cancer cells by enhancing TAK1 activation

TGF-β1 和 TNF-α 通过增强 TAK1 活化协同诱导乳腺癌细胞上皮向间质转化

阅读:8
作者:Sheng-Jun Liao, Jing Luo, Dong Li, Yuan-Hong Zhou, Bin Yan, Jing-Jing Wei, Jian-Cheng Tu, Yi-Rong Li, Gui-Mei Zhang, Zuo-Hua Feng

Abstract

TGF-β1 is a main inducer of epithelial to mesenchymal transition (EMT). However, many breast cancer cells are not sensitive to the EMT induction by TGF-β1 alone. So far, the mechanisms underlying the induction of TGF-β1-insensitive breast cancer cells remains unclear. Here we report that TNF-α can induce EMT and invasiveness of breast cancer cells which are insensitive to TGF-β1. Intriguingly, TGF-β1 could cooperate with TNF-α to promote the EMT and invasiveness of breast cancer cells. The prolonged co-stimulation with TGF-β1 and TNF-α could enhance the sustained activation of Smad2/3, p38 MAPK, ERK, JNK and NF-κB pathways by enhancing the activation of TAK1, which was mediated by the gradually up-regulated TβRs. Except for JNK, all of these pathways were required for the effects of TGF-β1 and TNF-α. Importantly, the activation of p38 MAPK and ERK pathways resulted in a positive feed-back effect on TAK1 activation by up-regulating the expression of TβRs, favoring the activation of multiple signaling pathways. Moreover, SLUG was up-regulated and required for the TGF-β1/TNF-α-induced EMT and invasiveness. In addition, SLUG could also enhance the activation of signaling pathways by promoting TβRII expression. These findings suggest that the up-regulation of TβRs contributes to the sustained activation of TAK1 induced by TGF-β1/TNF-α and the following activation of multiple signaling pathways, resulting in EMT and invasiveness of breast cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。