Gyeji-tang water extract exerts anti-inflammatory activity through inhibition of ERK and NF-κB pathways in lipopolysaccharide-stimulated RAW 264.7 cells

桂枝汤水提取物通过抑制脂多糖刺激的 RAW 264.7 细胞中的 ERK 和 NF-κB 通路发挥抗炎活性

阅读:6
作者:Sae-Rom Yoo, Yeji Kim, Mee-Young Lee, Ohn-Soon Kim, Chang-Seob Seo, Hyeun-Kyoo Shin, Soo-Jin Jeong

Background

Gyeji-tang (GJT, Guizhi Tang in Chinese, Keishi-to in Japanese) is a traditional herbal decoction composed of 5 medicinal herbs. GJT has been used to treat the common cold, headaches, and fever in Asian countries including Korea, China, and Japan. In the present study, we investigated the inhibitory effect of a water extract of GJT on inflammatory response using the murine macrophage cell line, RAW 264.7.

Conclusion

These data suggest that GJT has anti-inflammatory possibly through blocking ERK and NF-κB signaling pathways.

Methods

RAW 264.7 macrophages were treated with lipopolysaccharide (LPS) to upregulate inflammatory genes. Cells were pretreated with various concentrations of GJT for 4 h and stimulated with LPS for an additional 20 h. Productions of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assays (ELISAs). Protein expressions of heme oxygenase (HO)-1, extracellular signal-regulated kinase (ERK), and nuclear factor kappa-B (NF-κB) were analyzed by immunoblotting.

Results

Treatment with the GJT extract enhanced expression of HO-1 in macrophages without cytotoxicity. GJT extract significantly inhibited proinflammatory cytokines TNF-α and IL-6 in LPS-stimulated cells. GJT suppressed LPS-induced COX-2 expression, leading to a decrease in COX-2-derived PGE2 level. In addition, GJT extract prevented phosphorylation of ERK and NF-κB translocalization to the nucleus in LPS-treated RAW 264.7 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。