Abstract
The mammalian Mre11-Rad50-Nbs1 (MRN) complex coordinates double-strand break signaling with repair by homologous recombination and is associated with the H2A.X chromatin response to double-strand breaks, but its role in nonhomologous end joining (NHEJ) is less clear. Here we show that Mre11 promotes efficient NHEJ in both wild-type and Xrcc4(-/-) mouse embryonic stem cells. Depletion of Mre11 reduces the use of microhomology during NHEJ in Xrcc4(+/+) cells and suppresses end resection in Xrcc4(-/-) cells, revealing specific roles for Mre11 in both classical and alternative NHEJ. The NHEJ function of Mre11 is independent of H2A.X. We propose a model in which both enzymatic and scaffolding functions of Mre11 cooperate to support mammalian NHEJ.
