Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(Ca) channels: implications for soluble epoxide hydrolase inhibition

环氧二十碳三烯酸和二羟基二十碳三烯酸通过 BK(Ca) 通道扩张人类冠状动脉小动脉:对可溶性环氧化物水解酶抑制的影响

阅读:6
作者:Brandon T Larsen, Hiroto Miura, Ossama A Hatoum, William B Campbell, Bruce D Hammock, Darryl C Zeldin, John R Falck, David D Gutterman

Abstract

Epoxyeicosatrienoic acids (EETs) are metabolized by soluble epoxide hydrolase (sEH) to form dihydroxyeicosatrienoic acids (DHETs) and are putative endothelium-derived hyperpolarizing factors (EDHFs). EDHFs modulate microvascular tone; however, the chemical identity of EDHF in the human coronary microcirculation is not known. We examined the capacity of EETs, DHETs, and sEH inhibition to affect vasomotor tone in isolated human coronary arterioles (HCAs). HCAs from right atrial appendages were prepared for videomicroscopy and immunohistochemistry. In vessels preconstricted with endothelin-1, three EET regioisomers (8,9-, 11,12-, and 14,15-EET) each induced a concentration-dependent dilation that was sensitive to blockade of large-conductance Ca2+-activated K+ (BK(Ca)) channels by iberiotoxin. EET-induced dilation was not altered by endothelial denudation. 8,9-, 11,12-, and 14,15-DHET also dilated HCA via activation of BK(Ca) channels. Dilation was less with 8,9- and 14,15-DHET but was similar with 11,12-DHET, compared with the corresponding EETs. Immunohistochemistry revealed prominent expression of cytochrome P-450 (CYP450) 2C8, 2C9, and 2J2, enzymes that may produce EETs, as well as sEH, in HCA. Inhibition of sEH by 1-cyclohexyl-3-dodecylurea (CDU) enhanced dilation caused by 14,15-EET but reduced dilation observed with 11,12-EET. DHET production from exogenous EETs was reduced in vessels pretreated with CDU compared with control, as measured by liquid chromatography electrospray-ionization mass spectrometry. In conclusion, EETs and DHETs dilate HCA by activating BK(Ca) channels, supporting a role for EETs/DHETs as EDHFs in the human heart. CYP450s and sEH may be endogenous sources of these compounds, and sEH inhibition has the potential to alter myocardial perfusion, depending on which EETs are produced endogenously.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。