Essential Nutrient and Trace Element Foliar Resorption of Two Co-Existing Nothofagus Species Grown Under Different Environmental Conditions in Southern Patagonia

巴塔哥尼亚南部不同环境条件下两种共生南山毛榉树种的必需营养和微量元素叶面吸收

阅读:6
作者:Héctor A Bahamonde, Victoria Fernández, Javier Gyenge, Francisco Mattenet, Pablo L Peri

Abstract

Nutrient resorption is crucial for mineral element conservation and efficiency of forest species, but knowledge on its significance and the mechanisms involved is still limited for most species and habitats. Focusing on the harsh conditions for plant growth and survival of southern Patagonia, a field study for comparing the rate of foliar resorption of macro-, micro-nutrients, and trace elements in coexisting Nothofagus pumilio and Nothofagus antarctica forests was performed. Forests located in three contrasting productivity sites (with different soil and climatic conditions) were selected, and mature, functional versus senescent leaves of both species were collected at two different dates of the growing season. Macro- (N, P, Ca, K, S, and Mg), micronutrients (B, Cu, Fe, Mn, Zn, and Ni), and trace elements (Al, Li, Pb, Rb, Sr, Ti, and Tl) were determined in foliar tissues. The mineral element concentrations of mature and senescent leaves were used for calculating the nutrient resorption efficiency (NuR). In general, and making an average of all sites and species, macro-nutrient resorption showed a decreasing trend for N > S = K > P > Mg, being Ca the only macro-nutrient with negative values (i.e., no resorption). Resorption of the majority of the elements did not vary between species in any of the evaluated sites. Variation across sites in nutrient resorption efficiency for most macronutrients, some micronutrients, and trace elements was observed for N. antarctica, whereas N. pumilio had a similar NuR for all experimental sites. On the other hand, regardless of the site or the species, some elements were not resorbed (e.g., B, Cu, Fe, Mn, Al, and Ti). It is concluded that both Nothofagus species performed similarly concerning their nutrient conservation strategy, when coexisting in the same mixed forest. However, no evidence was gained for an increased rate of foliar NuR in association with the sites subjected to more limiting soil and climatic conditions for plant growth.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。