Dextran sulfate-resistant A/Puerto Rico/8/34 influenza virus is associated with the emergence of specific mutations in the neuraminidase glycoprotein

硫酸葡聚糖耐药型 A/Puerto Rico/8/34 流感病毒与神经氨酸酶糖蛋白中特定突变的出现有关

阅读:4
作者:Hiroshi Yamada, Chioko Nagao, Ahmad M Haredy, Yasuko Mori, Kenji Mizuguchi, Koichi Yamanishi, Shigefumi Okamoto

Abstract

Dextran sulfate (DS) is a negatively charged sulfated polysaccharide that suppresses the replication of influenza A viruses. The suppression was thought to be associated with inhibition of the hemagglutinin-dependent fusion activity. However, we previously showed that suppression by DS was observed not only at the initial stage of viral infection, but also later when virus is released from infected cells due to inhibition of neuraminidase (NA) activity. In the present study, we isolated DS-resistant A/Puerto Rico/8/34 (PR8) influenza viruses and analyzed the inhibition by DS. We found six mutations in NA genes of five independent resistant PR8 viruses and each resistant NA gene had two mutations. All mutations were from basic to acidic or neutral amino acids. In addition, R430L, K432E or K435E in the 430-435 region was a common mutation in all resistant NA genes. To determine which amino acid(s) are responsible for this resistance, a panel of recombinant viruses containing a PR8 and A/WSN/33(WSN) chimeric NA gene or an NA gene with different mutation(s) was generated using reverse genetics. Using recombinant viruses containing a PR8/WSN chimeric NA, we showed that one third of the C-terminal region of PR8 NA was responsible for DS-sensitivity. Recombinant viruses with a single mutation in NA replicated better than wild-type PR8 in the presence of DS, but were still DS-sensitive. However, replication of recombinant viruses with double mutations from the resistant viruses was not affected by the presence or absence of DS. In addition, resistant recombinant viruses were found to be sensitive to the NA inhibitor, oseltamivir and the oseltamivir-resistant recombinant virus was sensitive to DS. These results suggested that DS is an NA inhibitor with a different mechanism of action from the currently used NA inhibitors and that DS could be used in combination with these inhibitors to treat influenza virus infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。