Dal81 enhances Stp1- and Stp2-dependent transcription necessitating negative modulation by inner nuclear membrane protein Asi1 in Saccharomyces cerevisiae

Dal81 增强了酿酒酵母中 Stp1 和 Stp2 依赖的转录,需要内核膜蛋白 Asi1 进行负调节

阅读:7
作者:Mirta Boban, Per O Ljungdahl

Abstract

The yeast transcription factors Stp1 and Stp2 are synthesized as latent cytoplasmic precursors. In response to extracellular amino acids, the plasma membrane SPS sensor endoproteolytically excises the N-terminal domains that mediate cytoplasmic retention, enabling the processed forms to efficiently enter the nucleus and induce gene expression. Cytoplasmic retention is not absolute, low levels of full-length Stp1 and Stp2 "leak" into the nucleus, and the concerted action of inner nuclear membrane proteins Asi1, Asi2, and Asi3 restricts their promoter access. In cells lacking Asi function, the precursor forms bind promoters and constitutively induce gene expression. To understand the requirement of Asi-dependent repression, spontaneous mutations in Required for Latent Stp1/2-mediated transcription (RLS) genes that abolish the constitutive expression of SPS sensor-regulated genes in an asi1Delta strain were selected. A single gene, allelic with DAL81, was identified. We show that Dal81 indiscriminately amplifies the transactivation potential of both full-length and processed Stp1 and Stp2 by facilitating promoter binding. In dal81Delta mutants, the repressing activity of the Asi proteins is dispensable, demonstrating that without amplification, the levels of full-length Stp1 and Stp2 that escape cytoplasmic retention are insufficient to activate transcription. Conversely, the high levels of processed Stp1 and Stp2 that accumulate in the nucleus of induced cells activate transcription in the absence of Dal81.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。