PPRC1, but not PGC-1α, levels directly correlate with expression of mitochondrial proteins in human dermal fibroblasts

PPRC1 水平与人类真皮成纤维细胞中线粒体蛋白的表达直接相关,而 PGC-1α 水平与此无关

阅读:4
作者:Mateus Prates Mori, Nadja Cristhina de Souza-Pinto

Abstract

The XPC protein, which is mutated in xeroderma pigmentosum (XP) complementation group C (XP-C), is a lesion recognition factor in NER, but it has also been shown to interact with and stimulate DNA glycosylases, to act as transcriptional co-activator and on energy metabolism adaptation. We have previously demonstrated that XP-C cells show increased mitochondrial H2O2 production with a shift between respiratory complexes I and II, leading to sensitivity to mitochondrial stress. Here we report a marked decrease in expression of the transcriptional co-activator PGC-1α, a master regulator of mitochondrial biogenesis, in XP-C cells. A transcriptional role for XPC in PGC-1α expression was discarded, as XPC knockdown did not downregulate PGC-1α expression and XPC-corrected cells still showed lower PGC-1α expression. DNA methylation alone did not explain PGC-1α silencing. In four different XP-C cell lines tested, reduction of PGC-1α expression was detected in three, all of them carrying the c.1643_1644delTG mutation (ΔTG) in XPC. Indeed, all cell lines carrying XPC ΔTG mutation, whether homozygous or heterozygous, presented decreased PGC-1α expression. However, this alteration in gene expression was not exclusive to XPC ΔTG cell lines, for other non-related cell lines also showed altered PGC-1α expression. Moreover, PGC1-α expression did not correlate with expression levels of TFAM and SDHA, known PGC-1α target-genes. In turn, PPRC1, another member of the PGC family of transcription co-activators controlling mitochondrial biogenesis, displayed a good correlation between its expression in 10 cell lines and TFAM and SDHA. Nonetheless, PGC-1α knockdown led to a slight decrease of its target-gene protein level, TFAM, and subsequently of a mtDNA-encoded gene, MT-CO2. These results indicate that PGC-1α and PPRC1 cooperate as regulators of mitochondrial biogenesis and maintenance in fibroblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。