Genetic ablation of calcium-independent phospholipase A(2)beta causes hypercontractility and markedly attenuates endothelium-dependent relaxation to acetylcholine

基因消融钙非依赖性磷脂酶A(2)β导致收缩性亢进,并显著减弱内皮依赖性乙酰胆碱舒张作用

阅读:5
作者:Hans H Dietrich, Dana R Abendschein, Sung Ho Moon, Neema Nayeb-Hashemi, David J Mancuso, Christopher M Jenkins, Kevin M Kaltenbronn, Kendall J Blumer, John Turk, Richard W Gross

Abstract

Activation of phospholipases leads to the release of arachidonic acid and lysophospholipids that play prominent roles in regulating vasomotor tone. To identify the role of calcium-independent phospholipase A(2)beta (iPLA(2)beta) in vasomotor function, we measured vascular responses to phenylephrine (PE) and ACh in mesenteric arterioles from wild-type (WT; iPLA(2)beta(+/+)) mice and those lacking the beta-isoform (iPLA(2)beta(-/-)) both ex vivo and in vivo. Vessels isolated from iPLA(2)beta(-/-) mice demonstrated increased constriction to PE, despite lower basal smooth muscle calcium levels, and decreased vasodilation to ACh compared with iPLA(2)beta(+/+) mice. PE constriction resulted in initial intracellular calcium release with subsequent steady-state constriction that depended on extracellular calcium influx. Endothelial denudation had no effect on vessel tone or PE-induced constriction although the dilation to ACh was significantly reduced in iPLA(2)beta(+/+) vessels. In contrast, vessels from iPLA(2)beta(-/-) constricted by 54% after denudation, indicating smooth muscle hypercontractility. In vivo, blood pressure, resting vessel diameter, and constriction of mesenteric vessels to PE were not different in iPLA(2)beta(-/-) vessels compared with WT mouse vessels. However, relaxation after ACh administration in situ was attenuated, indicating an endothelial inability to induce dilation in response to ACh. In cultured endothelial cells, inhibition of iPLA(2)beta with (S)-(E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one (BEL) decreased endothelial nitric oxide synthase phosphorylation and reduced endothelial agonist-induced intracellular calcium release as well as extracellular calcium influx. We conclude that iPLA(2)beta is an important mediator of vascular relaxation and intracellular calcium homeostasis in both smooth muscle and endothelial cells and that ablation of iPLA(2)beta causes agonist-induced smooth muscle hypercontractility and reduced agonist-induced endothelial dilation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。