Differential role of endothelial versus neuronal nitric oxide synthase in the regulation of coronary blood flow during pacing-induced increases in cardiac workload

内皮细胞与神经元一氧化氮合酶在起搏引起心脏负荷增加期间调节冠状动脉血流的不同作用

阅读:9
作者:Husain Shabeeh, Narbeh Melikian, Rafal Dworakowski, Barbara Casadei, Phil Chowienczyk, Ajay M Shah

Abstract

Endothelial nitric oxide synthase (eNOS) was assumed to be the only source of nitric oxide (NO) involved in the regulation of human coronary blood flow (CBF). However, our recent first-in-human study using the neuronal NOS (nNOS)-selective inhibitor S-methyl-L-thiocitrulline (SMTC) showed that nNOS-derived NO also plays a role. In this study, we investigated the relative contribution of nNOS and eNOS to the CBF response to a pacing-induced increase in cardiac workload. Incremental right atrial pacing was undertaken in patients with angiographically normal coronary arteries during intracoronary infusion of saline vehicle and then either SMTC or N(G)-monomethyl-l-arginine (l-NMMA; which inhibits both eNOS and nNOS). Intracoronary SMTC (0.625 μmol/min) and l-NMMA (25 μmol/min) reduced basal CBF to a similar extent (-19.2 ± 3.2% and 25.0 ± 2.7%, respectively; n = 10 per group). Pacing-induced increases in CBF were significantly blunted by l-NMMA (maximum CBF: 83.5 ± 14.2 ml/min during saline vs. 61.6 ± 9.5 ml/min during l-NMMA; P < 0.01). By contrast, intracoronary SMTC had no effect on the maximum CBF during pacing (98.5 ± 12.9 ml/min during saline vs. 102.1 ± 16.6 ml/min during SMTC; P = not significant). l-NMMA also blunted the pacing-induced increase in coronary artery diameter (P < 0.001 vs. saline), whereas SMTC had no effect. Our results confirm a role of nNOS in the regulation of basal CBF in humans but show that coronary vasodilation in response to a pacing-induced increase in cardiac workload is exclusively mediated by eNOS-derived NO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。