Graphene Microelectrode Arrays, 4D Structured Illumination Microscopy, and a Machine Learning Spike Sorting Algorithm Permit the Analysis of Ultrastructural Neuronal Changes During Neuronal Signaling in a Model of Niemann-Pick Disease Type C

石墨烯微电极阵列、4D 结构照明显微镜和机器学习尖峰排序算法可以分析尼曼匹克病 C 型模型中神经元信号传导过程中的超微结构神经元变化

阅读:6
作者:Meng Lu, Ernestine Hui, Marius Brockhoff, Jakob Träuble, Ana Fernandez-Villegas, Oliver J Burton, Jacob Lamb, Edward Ward, Philippa J Woodhams, Wadood Tadbier, Nino F Läubli, Stephan Hofmann, Clemens F Kaminski, Antonio Lombardo, Gabriele S Kaminski Schierle

Abstract

Simultaneously recording network activity and ultrastructural changes of the synapse is essential for advancing understanding of the basis of neuronal functions. However, the rapid millisecond-scale fluctuations in neuronal activity and the subtle sub-diffraction resolution changes of synaptic morphology pose significant challenges to this endeavor. Here, specially designed graphene microelectrode arrays (G-MEAs) are used, which are compatible with high spatial resolution imaging across various scales as well as permit high temporal resolution electrophysiological recordings to address these challenges. Furthermore, alongside G-MEAs, an easy-to-implement machine learning algorithm is developed to efficiently process the large datasets collected from MEA recordings. It is demonstrated that the combined use of G-MEAs, machine learning (ML) spike analysis, and 4D structured illumination microscopy (SIM) enables monitoring the impact of disease progression on hippocampal neurons which are treated with an intracellular cholesterol transport inhibitor mimicking Niemann-Pick disease type C (NPC), and show that synaptic boutons, compared to untreated controls, significantly increase in size, leading to a loss in neuronal signaling capacity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。