Structural, cellular, and molecular evaluation of bone erosion in experimental models of rheumatoid arthritis: assessment by μCT, histology, and serum biomarkers

类风湿关节炎实验模型中骨侵蚀的结构、细胞和分子评估:通过 μCT、组织学和血清生物标志物进行评估

阅读:6
作者:Cheng-Chi Chao, Shi-Juan Chen, Iannis E Adamopoulos, Michael Judo, Agelio Asio, Gulesi Ayanoglu, Edward P Bowman

Abstract

Bone erosion is a clinical endpoint for various diseases including rheumatoid arthritis. In this paper, we used rodent arthritis models with severe bone erosion to examine the structural, cellular, and molecular aspects of the inflammation-driven bone resorption process. Our data show that bone loss is observed only in chronically, severely inflamed joints. The most severely affected anatomic sites were the metatarsal phalangeal joint and tarsal bones of the paw. The magnitude of the inflammation-driven bone erosion was dependent on both the duration of inflammatory response and the severity of the joint swelling response. The application of micro-computed tomography well demonstrated the therapeutic benefit of anti-IL-17A in protection of bones from erosion. Alterations in the cellular profile of the joint occurred prior to any major structural deterioration of the bone. Receptor activator for nuclear factor κB ligand, a potent inducer of osteoclast differentiation and bone resorption, was elevated in animals coincident with severe arthritis initiation. The experimental approaches and concepts outlined in this paper provide a valuable process to evaluate and quantify therapies that modulate rodent arthritis-associated bone-erosion models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。