Mechanosensitive Vaginal Epithelial Adenosine Triphosphate Release and Pannexin 1 Channels in Healthy, in Type 1 Diabetic, and in Surgically Castrated Female Mice

健康、1 型糖尿病和手术阉割雌性小鼠的机械敏感性阴道上皮三磷酸腺苷释放和 Pannexin 1 通道

阅读:6
作者:Jessica Harroche, Marcia Urban-Maldonado, Mia M Thi, Sylvia O Suadicani

Aim

To investigate if intravaginal mechanical stimulation triggers vaginal ATP release and if (a) this response involves Panx1 channels and (b) this response is altered in animal models of diabetes and menopause.

Background

Distension of hollow organs is known to release adenosine triphosphate (ATP) from the lining epithelium, which triggers local responses and activates sensory nerves to convey information to the central nervous system. However, little is known regarding participation of ATP and mediators of ATP release, such as Pannexin 1 (Panx1) channels, in mechanisms of vaginal mechanosensory transduction and of changes imposed by diabetes and menopause, conditions associated with vaginal dysfunction and risk for impaired genital arousal.

Conclusions

Panx1 channel is a component of the vaginal epithelial mechanosensory transduction system that is essential for proper vaginal response to mechanical stimulation and is targeted in T1D and menopause. Harroche J, Urban-Maldonado M, Thi MM, et al. Mechanosensitive Vaginal Epithelial Adenosine Triphosphate Release and Pannexin 1 Channels in Healthy, in Type 1 Diabetic, and in Surgically Castrated Female Mice. J Sex Med 2020;17:870-880.

Methods

Diabetic Akita female mice were used as a type 1 diabetes (T1D) model and surgical castration (ovariectomy [OVX]) as a menopause model. Panx1-null mice were used to evaluate Panx1 participation in mechanosensitive vaginal ATP release. Vaginal washes were collected from anesthetized mice at baseline (non-stimulated) and at 5 minutes after intravaginal stimulation. For the OVX and Sham groups, samples were collected before surgery and at 4, 12, 22, 24, and 28 weeks after surgery. ATP levels in vaginal washes were measured using the luciferin-luciferase assay. Panx1 mRNA levels in vaginal epithelium were quantified by quantitative polymerase chain reaction. Outcomes: The main outcome measures are quantification of mechanosensitive vaginal ATP release and evaluation of impact of Panx1 deletion, OVX, and T1D on this response.

Results

Intravaginal mechanical stimulation-induced vaginal ATP release was 84% lower in Panx1-null (P < .001) and 76% lower in diabetic (P < .0001) mice compared with controls and was reduced in a progressive and significant manner in OVX mice when compared with Sham. Panx1 mRNA expression in vaginal epithelium was 44% lower in diabetics than that in controls (P < .05) and 40% lower in OVX than that in the Sham (P < .05) group. Clinical translation: Panx1 downregulation and consequent attenuation of mechanosensitive vaginal responses may be implicated in mechanisms of female genital arousal disorder, thereby providing potential targets for novel therapies to manage this condition. Strengths & limitations: Using animal models, we demonstrated Panx1 involvement in mechanosensitive vaginal ATP release and effects of T1D and menopause on this response and on Panx1 expression. A limitation is that sex steroid hormone levels were not measured, precluding correlations and insights into mechanisms that may regulate Panx1 expression in the vaginal epithelium. Conclusions: Panx1 channel is a component of the vaginal epithelial mechanosensory transduction system that is essential for proper vaginal response to mechanical stimulation and is targeted in T1D and menopause. Harroche J, Urban-Maldonado M, Thi MM, et al. Mechanosensitive Vaginal Epithelial Adenosine Triphosphate Release and Pannexin 1 Channels in Healthy, in Type 1 Diabetic, and in Surgically Castrated Female Mice. J Sex Med 2020;17:870-880.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。