Interaction between CHOP and FoxO6 promotes hepatic lipid accumulation

CHOP 与 FoxO6 相互作用促进肝脏脂质积累

阅读:4
作者:Dae Hyun Kim, Byeong Moo Kim, Ki Wung Chung, Yeon Ja Choi, Byung Pal Yu, Hae Young Chung

Aims

Endoplasmic reticulum (ER) stress is one of the major causes of hepatic insulin resistance through increasing de novo lipogenesis. Forkhead box O6 (FoxO6) is a transcription factor mediating insulin signalling to glucose and lipid metabolism, therefore, dysregulated FoxO6 is involved in hepatic insulin resistance. In this study, we elucidated the role of FoxO6 in ER stress-induced hepatic lipogenesis.

Background & aims

Endoplasmic reticulum (ER) stress is one of the major causes of hepatic insulin resistance through increasing de novo lipogenesis. Forkhead box O6 (FoxO6) is a transcription factor mediating insulin signalling to glucose and lipid metabolism, therefore, dysregulated FoxO6 is involved in hepatic insulin resistance. In this study, we elucidated the role of FoxO6 in ER stress-induced hepatic lipogenesis.

Conclusion

Our data present significant evidence demonstrating that CHOP and FoxO6 interact to induce hepatic lipid accumulation through PPARγ expression during ER stress.

Methods

Hepatic ER stress responses and lipogenesis were monitored in mice overexpressed with constitutively active FoxO6 allele and FoxO6-null mice. In the in vitro study, HepG2 cells overexpressing constitutively active FoxO6 were treated with palmitate, and then alterations in ER stress and lipid metabolism were measured.

Results

FoxO6 activation induced hepatic lipogenesis and the expression of ER stress-inducible genes. The expression and transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) were significantly increased in constitutively active FoxO6 allele. Interestingly, we found that the active FoxO6 physically interacted with C/EBP homologous protein (CHOP), an ER stress-inducible transcription factor, which was responsible for PPARγ expression. Palmitate treatment caused the expression of ER stress-inducible genes, which was deteriorated by FoxO6 activation in HepG2 cells. Palmitate-induced ER stress led to PPARγ expression through interactions between CHOP and FoxO6 corresponding to findings in the in vivo study. On the other hand, the expression of PPARα and β-oxidation were decreased in constitutively active FoxO6 allele which implied that lipid catabolism is also regulated by FoxO6.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。