The methylation of the TSC2 promoter underlies the abnormal growth of TSC2 angiomyolipoma-derived smooth muscle cells

TSC2 启动子甲基化是 TSC2 血管平滑肌脂肪瘤衍生的平滑肌细胞异常生长的原因

阅读:9
作者:Elena Lesma, Silvia Maria Sirchia, Silvia Ancona, Stephana Carelli, Silvano Bosari, Filippo Ghelma, Emanuele Montanari, Anna Maria Di Giulio, Alfredo Gorio

Abstract

Tuberous sclerosis complex (TSC) is an autosomal-dominant disease that is caused by mutations in either the TSC1 or TSC2 gene. Smooth muscle-like cells (ASMs) were isolated from an angiomyolipoma of a patient with TSC. These cells lacked tuberin, were labeled by both HMB45 and CD44v6 antibodies, and had constitutive S6 phosphorylation. The cells bear a germline TSC2 intron 8-exon 9 junction mutation, but DNA analysis and polymerase chain reaction amplification failed to demonstrate loss of heterozygosity. Testing for an epigenetic alteration, we detected methylation of the TSC2 promoter. Its biological relevance was confirmed by tuberin expression and a reduction in HMB45 labeling and S6 constitutive phosphorylation after exposure to the chromatin-remodeling agents, trichostatin A and 5-azacytidine. These cells were named TSC2(-/meth) ASMs. Their proliferation required epidermal growth factor in the medium as previously described for TSC2(-/-) ASMs. Blockade of epidermal growth factor with monoclonal antibodies caused the death of TSC2(-/meth) ASMs. In addition, rapamycin effectively blocked the proliferation of these cells. Our data show for the first time that methylation of the TSC2 promoter might cause a complete loss of tuberin in TSC2 cells, and that the pathogenesis of angiomyolipomas might also originate from epigenetic defects in smooth muscle cells. Additionally, the effect of chromatin-remodeling agents in these cells suggests a further avenue for the treatment of TSC as well as lymphangioleiomyomatosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。