Hippocampal neurogenesis and Arc expression are enhanced in high-fat fed prepubertal female pigs by a diet including omega-3 fatty acids and Bifidobacterium breve CECT8242

含有 omega-3 脂肪酸和短双歧杆菌 CECT8242 的饮食可增强高脂喂养的青春期前雌性猪的海马神经发生和 Arc 表达

阅读:8
作者:Gemma Huguet, Irene Puig-Parnau, Jose C E Serrano, Meritxell Martin-Gari, María Rodríguez-Palmero, Jose Antonio Moreno-Muñoz, Joan Tibau, Elisabet Kádár

Conclusion

Our results show that the T4 dietary treatment is effective in potentiating neural plasticity in the dorsal hippocampus of prepubertal females on a HF diet.

Methods

Young female piglets were fed during 10 weeks with: standard diet (T1), high-fat (HF) diet (T2), HF diet including B. breve CECT8242 (T3) and HF diet including the probiotic and omega-3 fatty acids (T4). Using hippocampal sections, we analyzed by immunocytochemistry the levels of doublecortin (DCX) to study neurogenesis, and activity-regulated cytoskeleton-associated protein (Arc) as a synaptic plasticity related protein.

Purpose

Obesity during childhood has become a pandemic disease, mainly caused by a diet rich in sugars and fatty acids. Among other negative effects, these diets can induce cognitive impairment and reduce neuroplasticity. It is well known that omega-3 and probiotics have a beneficial impact on health and cognition, and we have hypothesized that a diet enriched with Bifidobacterium breve and omega-3 could potentiate neuroplasticity in prepubertal pigs on a high-fat diet.

Results

No effect of T2 or T3 was observed, whereas T4 increased both DCX+ cells and Arc expression. Therefore, a diet enriched with supplements of B. breve and omega-3 increases neurogenesis and synaptic plasticity in prepubertal females on a HF diet from nine weeks of age to sexual maturity. Furthermore, the analysis of serum cholesterol and HDL indicate that neurogenesis was related to lipidic demand in piglets fed with control or HF diets, but the neurogenic effect induced by the T4 diet was exerted by mechanisms independent of this lipidic demand.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。