Prediction of Human Pharmacokinetic Profiles of the Antituberculosis Drug Delamanid from Nonclinical Data: Potential Therapeutic Value against Extrapulmonary Tuberculosis

从非临床数据预测抗结核药物德拉马尼的人体药代动力学特征:对肺外结核的潜在治疗价值

阅读:5
作者:Masakazu Shibata, Masatoshi Masuda, Katsunori Sasahara, Hiroyuki Sasabe, Tomohiro Sasaki, Seongryul Kim, Kenji Takeuchi, Ken Umehara, Eiji Kashiyama

Abstract

Delamanid has been studied extensively and approved for the treatment of pulmonary multidrug-resistant tuberculosis; however, its potential in the treatment of extrapulmonary tuberculosis remains unknown. We previously reported that, in rats, delamanid was broadly distributed to various tissues in addition to the lungs. In this study, we simulated human plasma concentration-time courses (pharmacokinetic profile) of delamanid, which has a unique property of metabolism by albumin, using two different approaches (steady-state concentration of plasma-mean residence time [Css-MRT] and physiologically based pharmacokinetic [PBPK] modeling). In Css-MRT, allometric scaling predicted the distribution volume at steady state based on data from mice, rats, and dogs. Total clearance was predicted by in vitro-in vivo extrapolation using a scaled albumin amount. A simulated human pharmacokinetic profile using a combination of human-predicted Css and MRT was almost identical to the observed profile after single oral administration, which suggests that the pharmacokinetic profile of delamanid could be predicted by allometric scaling from these animals and metabolic capacity in vitro. The PBPK model was constructed on the assumption that delamanid was metabolized by albumin in circulating plasma and tissues, to which the simulated pharmacokinetic profile was consistent. Moreover, the PBPK modeling approach demonstrated that the simulated concentrations of delamanid at steady state in the lung, brain, liver, and heart were higher than the in vivo effective concentration for Mycobacterium tuberculosis. These results indicate that delamanid may achieve similar concentrations in various organs to that of the lung and may have the potential to treat extrapulmonary tuberculosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。