Selective activation of STAT3 and STAT5 dictates the fate of myeloid progenitor cells

STAT3 和 STAT5 的选择性激活决定了髓系祖细胞的命运

阅读:5
作者:Meichao Zhang #, Yiling Meng #, Yingxia Ying #, Pingting Zhou, Suning Zhang, Yong Fang, Yuan Yao, Dong Li

Abstract

The molecular programs that govern the directed differentiation of myeloid progenitor cells are still poorly defined. Using a previously established immortalized, phenotypically normal myeloid progenitor cell model mEB8-ER, we unveil a new mechanism mediated by STAT5 and STAT3 at a bifurcation point of myeloid progenitor cell-fate specification. We find that myeloid progenitor cells can spontaneously differentiate into neutrophils with a basal level of STAT3 phosphorylation, which is enhanced by G-CSF treatment or STAT3 over-expression, leading to elevated neutrophil differentiation. Reduced STAT3 phosphorylation caused by GM-CSF treatment, STAT3 specific inhibitor, or STAT3 depletion leads to attenuated myeloid differentiation into neutrophils, while elevating differentiation into monocytes/macrophages. In contrast, STAT5 appears to have an antagonistic function to STAT3. When activated by GM-CSF, STAT5 promotes myeloid differentiation into monocytes/macrophages but inhibits neutrophil differentiation. At the mechanistic level, GM-CSF activates STAT5 to up-regulate SOCS3, which attenuates STAT3 phosphorylation and consequently neutrophil differentiation, while enhancing monocyte/macrophage differentiation. Furthermore, inhibition of STAT5 and STAT3 in primary myeloid progenitors recapitulates the results from the mEB8-ER model. Together, our findings provide new mechanistic insights into myeloid differentiation and may prove useful for the diagnosis and treatment of diseases related to abnormal myeloid differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。